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Preface  
As technology enters more and more areas of our lives, including healthcare 
situations, there is a growing demand for developing automatic solutions that can 
understand, analyze, and generate languages that humans speak. The case is more 
challenging for the low-resource languages. Without a special focus on these 
languages, the quality of the processing would not be sufficient and the health care 
solution would not reach the majority of the population who could obtain the benefit. 
The goal of this book is to collect current advances and scenarios of language 
processing solutions for healthcare and low-resource languages. Data extracted from 
the clinical text and clinically relevant texts in languages other than English add 
another dimension to data aggregation. After years of neglect, low-resource languages 
(be they minority, regional, endangered, or heritage languages) have made it to the 
scene of computational linguistics, as increased availability of digital devices, which 
makes the request for digital usability of low-resource languages stronger. Much 
clinical information is currently contained in the free text of scientific publications 
and clinical records. For this reason, Natural Language Processing (NLP) has been 
increasingly impacting biomedical research. NLP researchers face the need to 
establish clinical text processing in a language other than English, and clinical 
informatics researchers and practitioners are looking for resources and NLP tools and 
techniques for their languages to speed up clinical practice and/or investigation. 

The primary element in communication is information exchange. People living in 
less connected areas are often unable to get the kind of information they need, due 
to various socioeconomical and technological barriers. As a result, they miss out on 
crucial knowledge required to improve their well-being. Technology pervades all 
aspects of society and continues to change the way people access and share 
information, learn and educate, as well as provide and access services in the 
healthcare sector and others. Language is the main medium through which such 
transformational technology can be integrated into the socioeconomic processes of 
a community. NLP and speech systems, therefore, break down barriers and enable 
users and whole communities with easy access to information and services. 

NLP is an active field of research that aims to teach computers to understand 
human language. Low-resource natural language processing has recently attracted 
much attention among NLP researchers due to its need and potential. The low- 
resource languages are languages that have not enough digital data to train robust 
NLP technologies, and as a result, few or no automated language processing systems 
exist for them. The research on these languages and building NLP applications for 
such languages can reinforce the ties between the world and ensure its diversity. The 
ability to analyze the clinical text in languages other than English opens access to 
important medical data concerning the cohorts of patients who are treated in countries 
where English is not the official language. This edition aims to capture NLP 
developments in healthcare and their applications across scientific disciplines for low- 
resource languages. It helps students, researchers, and professionals of the NLP 
community as well as interdisciplinary researchers involved in the field. 
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Chapter 1 describes a clinical practice by machine translation on low-resource 
languages. The chapter starts with the history of translation technologies that have 
played a vital role in the various crisis and relief scenarios as the Haitian earthquake 
in 2010 and Translators without Borders (TWB), respectively. The recently 
dissolved Standby Task Force (SBTF) deployed NLP to tackle misinformation 
during Coronavirus Pandemic 2019. Chapter 2 presents feature analysis and 
classification of impaired language caused by brain injury. Language impairment 
occurs from different illnesses, having a variety of causes. This focuses on the 
analysis of impaired language caused by a traumatic brain injury (TBI), which can 
vary from aphasia, apraxia, dysarthria, or other sorts of alterations. Chapter 3 
represents a review of NLP for mental disorders. In this chapter, the authors provide 
an overview of NLP applications and datasets dedicated to address problems related 
to mental health. The chapter focuses on the different applications proposed, the 
types of data sources these applications use, and the languages they cover. 

Chapter 4 presents an interesting example, healthcare NLP infrastructure for the 
Greek language. The infrastructure was developed initially for the processing of 
general language, and extended later on to incorporate biomedical texts as well. The 
infrastructure comprises: (a) components developed de novo to meet the needs of the 
domain-specific requirements, such as a biomedical corpus, a generic and application- 
independent medical ontology, and a multi-word term extraction mechanism, (b) 
general language processing tools that were enhanced for the processing of the 
corpus, such as tokenization and sentence splitting tools, and a lexicon-based 
morphosyntactic tagger. Chapter 5 deals with the recognition of medical domain 
multiword units (MWU) in texts written in Croatian language. The focus is on the 
automatic recognition of complex MWUs in low resource settings. Chapter 6 
developed HealFavor, a chat-based application for healthcare which is extended 
with machine translation. This application is inherently designed to personalize the 
interaction between the user and the system. It allows the user to interact with the 
system as they would interact with a real-life person, and hence its design must 
provide real-time feedback and deliver precise decisions. Chapter 7 focuses on the 
development of a machine translation system for promoting the use of a low-resource 
language in the clinical domain. In this chapter, the authors describe the approach of 
developing an MT system for translating clinical text from Basque into Spanish. 

Chapter 8 represents the study of various approaches proposed by researchers for 
detecting and extracting Adverse Drug Reactions (ADRs) from clinical reports, 
electronic health records, patient narratives, patient’s social media queries, and 
posts. Chapter 9 proposes that methods for detecting fake news so far have assumed 
that all content in a document is deceptive; however, those texts can include truthful 
claims. This study shows that the performance of fake news detection can increase 
if the text is first automatically summarized. The summarization process removes 
secondary ideas from documents and deceptive claims then stand out clearer for the 
subsequent classification as truthful or deceptive. The classification results on 
datasets in Arabic and English languages show an F-measure over 92%. The last 
chapter presents a setting employing NLP tools to improve patient-provider secure 
email communication via machine translation.  
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1 A Clinical Practice by 
Machine Translation on 
Low Resource Languages 

Rupjyoti Baruah and Anil Kumar Singh 
Department of Computer Science and Engineering, Indian 
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1.1 INTRODUCTION: MEDICAL TRANSLATION 

Machine Translation (MT) is a sub-field of computational linguistics that auto-
matically translates words or phrases of one human language into another. MT is 
widely applied to the medical field due to the current growth in interest and success 
of new language technologies. Medical translation involves the communication of 
knowledge dealing with various specialties, such as psychology, sociology, phar-
macology, psychiatry, and surgery. It is a specialized field of translation in pro-
viding healthcare assistance to minorities or foreigners. Hospitals across the country 
constantly require translation services to ensure fair treatment and correct diagnoses 
of patients’ particular problems. It is crucial to clarify the aspects of an ailment with 
a doctor and a doctor to fully understand their treatment details. Medical translators 
are responsible for translating patient records or medical-legal documents, hospi-
tals’ informational brochures, instructions of use for the medical equipment into a 
second language. In addition, translators prepare medical files for patients who seek 
medical advice outside their country of residence. Medical translators require much 
attention to accurately translate various documents ranging from labels to 
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brochures, medical and patient journals, training materials, and patents. Clinical 
document translation must be both medically precise and culturally sensitive. 
Medical professionals rely on medical translations to diagnose patients and monitor 
the treatment progress of their foreign-speaking patients. Translators have hand-
picked clinicians and doctors who understand the content based on the first inter-
action with patients locally. Medical translators have related education and work 
experience in clinical laboratories, hospitals, community health centers, nursing 
homes, doctors’ offices, blood donation centers, and other healthcare facilities. The 
misuse of medical terminology, inaccurate translation, or carelessness when trans-
lating medical reports and medical records can have serious consequences. The keys 
to producing a successful translation are a “lover of language, attentiveness, a hos-
pitality to pursue mysterious terminology, and caring enough to get it exactly right”. 

Medical jargon is full of sequences of words and idioms, which may sound unusual 
in everyday speech. Scientific language is a long-standing partner for clinical research 
organizations. A survey of medical translators (O’Neill 1998) reported that translators 
are not physicians but specialize in medical translation. Furthermore, the study re-
vealed that medical translators acquire background knowledge by joining different 
medical courses, studying medication, working in a situation directly or indirectly 
related to healthcare, or participating in medical translation courses. Translation re-
quires more than translating phrases in one language for another, adhering to grammar 
rules, and choosing the appropriate register. A translator has an excellent command of 
both the source and target languages and needs to be very sensitive to written and 
implied words. In the literature, several levels are passed to reach the current 
medical–digital applications. They are increasingly being developed in health pre-
vention, diagnostics, and therapy to promise great benefits and potential. Table 1.1 
depicts a timeline with the corresponding rise in digitalization of clinical text. 

1.2 IMPORTANCE OF MT SYSTEM AND LOW RESOURCE 
LANGUAGES 

MT plays an essential role in a society where different languages are spoken. It 
removes the language barrier and digital division in society by providing access to 
all the local languages that a person can understand. 

TABLE 1.1 
Rise of clinical text towards application    

Timeline Digitalization of Clinical Text  

800 BCE to ∼ 200 CE Divine and mystical → observation and reasoning 

1452–1516 Printed in Greek medical texts 

1000–1800 AD Greek and Arabic terminology by transliteration 

End of 1800 AD Local languages retaining the Græco-Latin 

1964–1966 ELISA as a psychotherapist    
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During the Haitian earthquake in 2010, translation technologies played a crucial 
role in various crisis and relief scenarios that act as disaster prevention and man-
agement. Air, land, and sea transport facilities, communication systems, hospitals, 
and electrical networks were damaged by the earthquake, which hampered early 
rescue and aid efforts. The earthquake caused an urgent need for outside rescuers to 
communicate with Haitians whose only language is Haitian Creole. As a result, a 
mobile translation program to translate between English and Haitian Creole was 
quickly written (Lewis 2010). Microsoft research developed a web-based English/ 
Creole translator on the Internet, adding disaster-specific words and phrases to the 
database. Building a more robust system, Microsoft regularly updates more parallel 
sentences and phrases in the system by taking medical terminology and other 
emergency-type notifications and translating them into Haitian-Creole. In addition, 
Microsoft Translator’s extensive API provides support to other software and Web 
sites. Developers trained an MT engine (Lewis 2010) by searching parallel data 
compiled by linguists (Rogl 2017), pre-translated medical terms for the rescue 
teams as Creole to English emergency text messages. 

The Covid-19 pandemic showed that the NLP and telehealth technology are not 
just passing trends in the medical industry. On the contrary, Covid-19 has hit 
businesses like never before, and the health sector has found it very hard to cope 
with this sudden change in reality. However, it saw challenges and opportunities 
which it did not see in the last few decades. As a result, the healthcare industry has 
transformed rapidly in the last decade. Patient data management is now electro-
nically managed using Electronic Health Records (EHR) or Electronic Medical 
Records (EMR). With the Covid-19 pandemic and its consequences of lockdowns, 
the medical industry took responsive measures as lucky enough to benefit from the 
outbreak, such as supermarkets and the home health with fitness niche. Medical 
translation has shaped the staggering progress and collective international effort to 
deal with the coronavirus outbreak made throughout 2020. Coronavirus outbreak 
has multiplied the logistical barriers for medical interpretation. Medical interpreters 
must work remotely, multiplying the challenges for front-line doctors and non- 
English-speaking patients. These issues are not unique to Covid-19. Recently, Ebola 
outbreaks in Africa and natural disasters in Haiti have seen localized problems. 
Those worst affected by such issues do not necessarily speak the same language as 
aid workers and national organizations. Thus, it makes a case for increased attention 
to language translation in crisis communication. 

One of the most pressing challenges has been delivering health advice and 
guidelines to the people in their native language. However, the issue persists for 
people residing in different countries when they are not native speakers of the 
national language. The medical translation practices and translation technology 
allow us to close these language gaps. 

1.2.1 LOW RESOURCE LANGUAGE 

Low-resource languages are those that have relatively fewer data available for 
training conversational AI systems. For example, among 7011 world languages, 
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there are still several languages that are native to a sizable number of people but 
which may not have considerable amounts of data sets for training an AI model. 
The importance of providing accurate and human-developed low-resource trans-
lations ensures that they do not leave behind individuals with limited English 
proficiency in response to natural disasters for public safety. MT is currently being 
developed in the clinical field to improve patient-provider and patient-staff com-
munication in multilingual clinical settings and increase access to health education 
resources in low-resource languages. 

India is a multilingual country as most people speak and understand more than 
one language or dialect that uses a different script. A famous aphorism depicts 
India’s linguistic diversity: “कोस कोस पर बदले पानी और चार कोस पर वाणी” (Every 
3 km (approximately 1 “kos”), the taste of water changes, every 12 km, the lan-
guage). Articles 344 (O’Neill 1998) and 351 of the Constitution of India, titled the 
Eighth Schedule, recognizes 22 languages as official languages of the states of 
India. India is home to more than 19,560 languages or dialects and nearly 97% 
population in the country call one language included in the 22 scheduled languages 
as their mother tongue. The remaining 3% speak other languages, according to the 
Census 20111. With a 121 crore population, 121 languages are spoken by 10,000 or 
more people in the country. 

Language is a critical element of culture and language diversity increases the 
cultural richness and beauty of linguistic diversity of literature from these different 
languages. The state of Assam is a gateway of India’s North Eastern Region close to 
its international borders with Bangladesh and Bhutan. Assamese, recognized as an 
official language of Assam, a branch of Indo-Aryan language, is the easternmost 
Indo-European language, spoken by over 14 million speakers and serves as the 
lingua franca of the region. Assamese is an anglicized form of the actual name 
Asamiya (অসমীয়া). The sister language of Assamese are (Bengali, Maithili, and 
Oriya) developed from Magadhi Prakrit. The Assamese script has a total of 
52 characters with 41 consonants and 11 vowels similar to the Devnagari. 

1.2.2 STRUCTURE OF MEDICAL WORD-FORMATION 

Most anatomical and clinical terms used in medicine today are Latin or Latinized 
Greek words, the origin of which can be traced back to the fifth century BC. The 
physician in ancient Rome or Greece communicated in native languages. Latin was 
the pre-dominant language used in medicine until the 18th century. Following are a 
few examples of Greek and Latin prefixes and suffixes with their meaning in  
Table 1.2 (Fischbach 1998; DžUGANOVá 2013; Karwacka 2015; (42)). When it 
splits the whole term into its components, then it readily grasps the meaning. As an 
example, hypoglycemia broken down into hypo (below normal), glyc (sugar), and 
emia (blood) indicates an insufficient blood sugar level. 

Medical terms are similar to learning a new language, like jigsaw puzzles. 
Terminologies are constructed of small pieces that make each word unique, but 
the pieces can be used in different combinations in other words as well (Chabner 
2020). Studying medical terms analyzes the words by breaking them into parts; 
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terminology is related to the human body’s structure and function, and identical 
pronunciation with a different meaning. The formation of medical word analysis is 
shown below:  

• Morphological through derivation, compounding, abbreviation.  
• Medical terms have pretty regular morphology, derived from Greek and 

Latin languages. The root words are combined with prefixes (start of a 
word) and suffixes (end of a word). The vowel “o” acts as a connection to 
the prefix to root words. Medical terms can contain multiple root words in 
various combinations:  
• Myocardium(মায়’কাৰ্ডিয়াম) = myo- (prefix) + card(ium) (root)  
• Endocarditis(এণ্ড’কাৰ্ডাইটিছ) = endo- (prefix) + card (root) + -itis 

(suffix)  
• Cytology(চাইট’লজী) = cyt(o) (root) + -logy (suffix))  
• Gastroenterology(গেষ্ট্ৰ’এণ্টেৰ’লজি) = gastr(o) (root) + enter(o) (root) + 

-logy (suffix)  
• Adenoma(এডেন’মা)= aden(o) (root) + oma (suffix)  
• Hydroxynitrodihydrothymine(হাইড্ৰ’ক্সিনাইট্ৰ’ডাইহাইড্ৰ’থায়মাইন) = 

Hydro (root) + xy (suffix) + nitro (root) + di (suffix) + hydro (root) + thy 
(suffix) + mine (suffix)  

• Hydroxywybutine (হাইড্ৰ’ক্সিবিউটাইন) = Hydro (root) + xy (suffix) + 
wy (suffix) + butine (suffix)  

• Most medical terms are compound words made up of prefixes, suffixes and 
may include multiple roots. Examples are blood donor, blood pressure, and 
blood group, etc.  

• An abbreviation is a contracted form of a word or phrase such as (AIDS 
(এইড্ছ), HIV (এইচ.আই.ভি.), and Covid (ক’ভিড)).  

• Collocation: co-occurrence or combination of words on the syntagmatic level.  
• collocations: haematostasia 
• synonymic variations: myeloproliferative syndrome→myeloprolifera-

tive disease and myeloproliferative disorder  
• forming of multi-word phrases: Coronavirus disease 2019  

• Borrowing words from other languages: loan words are lexical borrowings 
adopted from foreign languages by root-for-root, word-for-word, or literal 

TABLE 1.2 
Prefixes and suffixes with their meanings      

Prefix Meaning Suffix Meaning  

a- absence of -algia pain 

brady- slow -ectasia dilatation 

dys- difficult -ectomy excision 

hyper- above normal -emia blood    
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translation. Some examples are chorion, diabetes, myopia, ophthalmia, 
pneumonia, trauma (Greek origin), femur, humerus, occiput, mandible, 
puncture, pulp (Latin origin), and diarrhea, diphtheria, disease, dislocation, 
malaise (French origin) 

• Clipped words occur after discarding either the final (examina-
tion:পৰীক্ষা), beginning (university:বিশ্ববিদ্যালয়), central (influenza: 
ফ্লু) or end part (poliomyelitis: পলিঅ’). 

1.2.3 DIFFICULTIES OF MEDICAL TRANSLATION 

Most people without a medical education do not understand the meaning of some 
typical sentences (text has its definition) written as Triage notes. The sentences do 
not have a subject due to those not being grammatically correct. Doctors annotate 
concisely by using a lot of jargon. These are the typical sense of the word but not 
considering a different language. NLP practitioners have the responsibility for 
cleaning these texts by using off-the-shelf NLP libraries and algorithms. 

Consider the example of de-identified triage notes for deciphering taken from 
emergency room visits.   

• States started last night, upper abd, took alka seltzer approx 0500, no relief. 
nausea no vomiting  

• Since yesterday 10/10 constant Tylenol 1 hour ago. +nausea. diaphoretic. 
Mid abd radiates to back  

• Generalized abd radiating to lower × 3 days accompanied by dark stools. 
Now with bloody stool this am. Denies dizzy, sob, fatigue. 

Sentences have different semantics: “Sob” might be shortness of breath, different 
grammar: “since yesterday 10/10” (10/10 refers to the intensity of pain), and diverse 
vocabulary (abdominal can be abd). 

1.3 APPROACHES TO BUILDING MT SYSTEM 

MT solutions for the healthcare industry can broadly be categorized into rule-based, 
statistical, and neural types similar to usual MT categories. The evolution of MT is 
depicted in Table 1.3. Early Rule-based MT (RBMT) language experts manually            

TABLE 1.3 
Evolution of machine translation    

Timeline Evolution of MT  

1950–1980 RBMT 

1980–1990 EBMT 

1990–2015 SMT 

2015–Till Date NMT    
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crafted many rules to translate one language into another language. It relies on 
sophisticated built-in linguistic rules, millions of bilingual dictionaries for each 
language pair, and extensive lexicons with morphological, syntactic, and semantic 
information. These rules were applied to the input text and generated the translation 
of the target texts. Users can improve translation quality by adding terminology into 
the translation process by creating user-defined dictionaries, which override the 
system’s default settings. A quality RBMT system is computationally expensive 
due to training time and ongoing improvement of the system. 

A significant development in MT happened in the 1990s when companies like 
IBM started to leverage statistical models that significantly improved translation 
quality. The corpus-based Statistical Machine Translation (SMT) approach to 
learning by automatically searching sentences and translating them into the target 
language. SMT searches for patterns in a large number of parallel texts able to 
assign the probability of a sentence from the target language being the translation of 
another sentence from the source language. Building an SMT system requires a 
massive number of parallel corpora between source and target languages at the 
sentence level. The quality of SMT extensively depends on the language pair of the 
specific domain being translated. The corpora building can often be challenging in 
the healthcare industry. There is a massive variation in named entities such as 
diseases, chemical compounds, active ingredients, gender, symptoms, dosage le-
vels, dosage forms, route of administration, date, location, location-species, and 
adverse reaction. SMT technology is CPU intensive and requires an extensive 
hardware configuration to run translation models at a satisfactory performance 
quality. So, companies began to experiment with hybrid MT engines, which 
commonly combined SMT with RBMT. These advancements popularized MT 
technology and helped adoption on a global scale. The current state of the art in MT 
technology is Neural Machine Translation (NMT) harnesses the power of Artificial 
Intelligence (AI) and uses neural networks to generate translations. Language 
translation technology is continuously changing, bringing new functionalities and 
more significant benefits to the medical industry. The end-to-end training paradigm 
of NMT is the powerful modeling capacity of neural networks that can produce 
comparable or even better results than traditional MT systems. NMT uses a single 
large neural network to model the entire translation process, freeing the need for 
excessive feature engineering and employing continuous representations instead of 
discrete symbolic representations in SMT. 

An encoder-decoder network is quite successful in different Recurrent Neural 
Network (RNN) variations in NMT consisting of two components: an encoder that 
consumes the input text and a decoder that generates the translated output text 
(Wolk and Marasek 2020). The encoder extracts a fixed-sized dense representation 
of the different length input texts. The task of the decoder is to generate the cor-
responding text in the destination language based on this dense representation from 
the encoder (Bahdanau et al. 2014; Cho et al. 2014). In 2017, MT made another 
technological breakthrough in NMT with the advent of transformer model (Vaswani 
et al. 2017) which is a state-of-the-art model for neural MT (Wu et al. 2016; Lakew 
et al. 2018; Wang et al. 2019). The model uses self-attention to speed up the 
training with significantly more parallelization. It follows the architecture of the 
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encoder-decoder model by using stacked attention and point-wise fully connected 
layers for both the encoder and the decoder. The encoder can work on the input 
sequence in parallel and the decoder is auto-regressive. Previous output symbols 
influence each output and output symbols are generated one at a time (Figure 1.1). 
Several works in MT, especially in the health domain on low resource languages, 
are summarized in Table 1.4 below. 

Since the application scenarios and markets for MT are extensive, many com-
panies and organizations in different parts of the world are making attempts to build 
their own MT systems. Very few of them have focused on the medical and phar-
maceutical industry, perhaps because of its tremendous difficulty in translation and 
high information security requirements. The professional translators convey the 
original tone and intent, considering cultural and regional differences between 
source and target languages. Professional medical translation services with the lo-
calization industry can help healthcare professionals make more informed decisions 
regarding treatments or medical procedures. As the English language has not been 
widely used for official communication in Assam, professional Assamese transla-
tion services can help them capture the healthcare industry. The trustworthy 
translation services (Integrated Language Solutions2, Translation agency3, PEC 
Attestation, Apostille & Translation Services India Pvt. Ltd.4, Shakti Enterprise5, 
Somya Translation Pvt. Limited6, Linguainfo Language Translation Company7, 
TRIDINDIA8, and Honey Translation Services9) specifically related to medical and 
healthcare professionals supported by Assamese and other Indian languages save 
the lives of human beings. 

FIGURE 1.1 Schematic diagram of medical-text translation.    
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1.4 LEARNING TRANSPARENCY FOR PATIENT 

It is essential to provide proper care to the patient. We can enhance the patient ex-
perience as it is always an epicenter of what technology evolved in the medical field by 
keeping patients’ empathy in the heart, which is the best experience. Nowadays, people 
are more worried about their quality of care by moving to various doctor’s chambers. 
The value-based care providers can create a care gap or performance report compared 
with a peer provider or government agency that enhances the value-based model. NLP 
can impact the patient experience and also value-based care. A patient can schedule the 
doctor’s appointments online and prepare a form for the next day while staying away or 
sitting at home. In free-text clinical notes, much pertinent information for making 
correct predictions and recommendations is only available in healthcare. The free-text 
documents in the unstructured form are trapped enormously. NLP is a significant part 
of accumulating data from professional documents and clinical notes. The NLP is the 
primary use to transform the free (unstructured) text in documents and databases into 
normalized (structured) text. The structured data were suitable for analysis needed to 
make healthcare decisions that drive machine or deep learning algorithms. Horng et al. 
(2017) illustrate the benefit of extracting vital sign data and free text data to identify 
patients speculating of a life-threatening infection. These investigations used NLP to 
extricate data from the clinical text. Electronic health records (EHR) have become more 
prevalent across hospitals by implementing inpatient or ambulatory EHR systems. 

Several MT systems for mobile or web applications facilitating doctor-patient 
communication have been built for low and under-resourced languages. Ahmad et al., 
(Musleh et al. 2016) developed a real-world Hindi-English SMT system for doctor- 
patient communication. 

TABLE 1.4 
Major MT works on medical domain in low resource languages     

Article MT Approach Evaluation/Key Findings   

Zeng-Treitler et al. (2010) RBMT Babel Fish not adequate for medical records  

Ruiz Costa-Jussà et al. (2011) RBMT/SMT SMT better than RBMT  

Wu et al. (2011) SMT Best results of German, French, and Spanish  

Dwivedi and Sukhadeve (2013) RBMT English-Hindi MT system for Homoeopathy.  

Patil and Davies (2014) SMT GT not reliable for medical communication  

Liu and Cai (2015) Hybrid/SMT GT performed better than hybrid system  

Limsopatham and Collier 
(2015) 

SMT Map media messages to medical concepts  

Wołk and Marasek (2015) NMT Comparison of SMT-NMT on Polish-English  

Arcan and Buitelaar (2017) NMT Translating highly domain-specific expressions.  

Khan et al. (2018) NMT Transfer learning by initializing parameters 
of NMT.  

Skianis et al. (2020) NMT Generic, language-independent medical 
terminology translation    
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As healthcare advances to evolve to a more patient-oriented approach, patient 
expectations and demands will significantly push electronic communication. Many 
patients interested in using e-mail or other social media to communicate with their 
doctors are interested in receiving online health information from their doctor’s 
office. For increasing numbers of providers and patients, Web messaging linked to a 
patient EHR is likely to become the preferred communication channel for routine 
clinical communications. A potential drawback of Web messaging is that it provides 
a less robust means of communication. Audio-video recordings allow patients to 
share information with caretakers and family members accurately. Experts agreed 
that one of the most significant benefits of recording visits is improving patients’ 
recall and understanding of their medical conditions. Web messaging can be opti-
mally integrated into healthcare delivery to improve safety, quality, and efficiency. 

1.5 EVALUATION PROCEDURE AND METRIC ON MEDICAL 
DOMAIN 

The evaluation of MT systems is important since its results show the degree of 
output reliability and are exploited for system improvements. Some freely available 
commercial software has implications of incorrect medical translation due to lim-
itations in quality and considering ethnic diversity (Zeng-Treitler et al. 2010; Taylor 
et al. 2015; Anastasopoulos et al. 2021). There are many types of automated 
translation technology in the marketplace that can help automate the medical 
translation process. At times it becomes difficult for the translator to find exact 
words while translating because they have never heard of the new terms or esoteric 
expressions. An automated service was not a great fit for specific disaster voca-
bulary. The automatic translations hampered the Covid-19 response in some areas 
shown negatively impact communities of individuals with limited English profi-
ciency during natural disasters. For example, in 2017, an automatic translation of a 
wildfire notice in California’s Ventura county mistranslated the word “brush fire” 
using the Spanish word for “hairbrush” in place of “brush”. 

An inadequate translation in the medical field or misplacing of a word by a 
nonprofessional can lead to tragedy and cost a massive amount in medical mal-
practice compensation. In 2007, 47 patients had gone through a second knee re-
placement operation due to inaccurate translation. The translator translated the 
phrase “non-modular cemented” as “without cement” or “non-cemented”, resulting 
in painful methods that needed months of recovery. In 1980 at Florida hospital, 
Willie Ramirez ended up quadriplegic because a certified medical interpreter in 
Oregon translated the Spanish word “intoxicado” as “intoxicated” which means 
“ingested something” (Spanish). A slight mistranslation can lead the healthcare 
practitioner down the wrong path, although they realize that a mistake was made, 
which may be difficult to backtrack in later stages. 

Unlike general translations, medical translations should be done by highly- 
qualified translators who possess tremendous knowledge in the specific field. The 
quality of the text depends on sound medical knowledge and personal interest in 
the text. 
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Many anatomical and clinical terminologies that persist in medicine today are 
Latin or Latinized Greek words. These words can be traced back to the golden age 
of Greek civilization during the fifth century BC. Microsoft announced that 
Microsoft Translator would help users translate conversations, street signs, web-
sites, and documents to Assamese language and vice-versa. 

Evaluating the quality of MT requires an automatic method as human evaluation 
would be highly time-consuming and cost-inefficient to be evaluated. The criteria of 
translation quality are its adequacy and fluency. The most common evaluation metric is 
BiLingual Evaluation Understudy (BLEU) (Papineni et al. 2002). Given a human- 
generated reference sentence with a corresponding translated sentence, it calculates a 
score by comparing n-gram overlap. Two separate translators can not produce identical 
translations for the same sentence in the same language pair. A set of several rounds of 
iterations are required for fulfilling the client’s requirement. Automated translations find 
difficulties in interpreting contextual and cultural elements of a text and quality is 
dependent on the type of system and how it has been trained. 

The adequacy, fluency measures the effectiveness of a translation. Adequacy 
expresses meaning from the source language to the target language. Fluency 
measures the grammatically well-formed and ease of interpretation of the sentence 
(idiomatic word choices). Different word choices and changing the word order that 
conveys the same meaning is the challenge of evaluating translations for a sentence. 

BLEU, a corpus-based metric, calculates the automatic quality score for MT 
systems that estimate the correspondence between a translated output and a human 
reference translation (Papineni et al. 2002). The primary notion of BLEU is closer 
to a professional translation with its machine-translated output. BLEU counts the 
number of matches by comparing the n-gram of the candidate translation with the 
n-gram of the reference translation. The more matches, the better the translation 
quality, where matches are independent of their positions. 

A low BLEU score means a high mismatch. A sequence of words or tokens 
occurring within a given window (where n is window size) is known as n-gram. A 
perfect match and mismatch result in a score of 1.0 and 0.0, respectively. A 
translation that possesses exact words as in the references (more than one reference 
translation) satisfies the adequacy. The longer n-gram matches between reference 
and candidate translation tend to capture fluency. A BLEU score runs on a scale 
from 0 to 1. The score is expressed as percentages rather than decimals (turned into 
a 0 to 100 scale) for better readability. 

Mathematically, the BLEU score formula consists of two parts: the brevity 
penalty (BP) and the n-gram overlap are shown in the following Equation (1.1). 

BLEU BP exp w logp= . n
N

n n=1 (1.1)  

where ( )BP if c re if c r= {1, > ,1 r
c and P =n

Count n gram

Count n gram

( )

( )

The brevity penalty (BP) penalizes the BLEU score if the candidate sentence is 
shorter than the reference sentence. BP compensates for the possibility of high 
precision translation that is too short. Here c is the total number of unigrams 
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(length) in all the candidate sentences, and r is the sum of effective reference 
sentence length for each candidate sentence in the corpus. The two essential 
characteristics of translation are adequacy and fluency captured by the modified n- 
gram precision pn score. wn is n-gram precision weight. BLEU uses the value of N 
as 4. The number of word count for each candidate to its associated maximum 
reference count is a clip. Figure 1.2 depicts an evaluation process of the MT system 
using an automated evaluation matric BLUE. The test corpus of English(Eng)- 
Assamese(Ass) shows a dummy score of 28.8 for English to Assamese translation. 

An example of reference sentence and its several translated (candidate) outputs 
from English (source) to Assamese (target) are illustrated here. The n-gram match 
(length) between candidate translation and the given target reference is shown at the 
end of each candidate translation. 

Source Text: Wearing a face mask is compulsory in all public places. 
Target Text: সকলো ৰাজহুৱা স্থানত মুখা পিন্ধাটো বাধ্যতামূলক । 
Candidate1: মুখা পৰিধান কৰাটো এক বাধ্যতামূলক নিয়ম । (2-gram) 
Candidate2: মুখৰ মুখা পিন্ধাটো বাধ্যতামূলক । (3-gram) 
Candidate3: ৰাজহুৱা ঠাইত মুখা পিন্ধাটো বাধ্যতামূলক কৰা হৈছে । (4-gram) 
Candidate4: সকলো ৰাজহুৱা স্থানত মুখৰ মুখা পিন্ধাটো বাধ্যতামূলক । (5-gram)  

Nowadays, close derivatives of BLEU (METEOR, NIST, LEPOR, and F-Measure) are 
often used to compare the quality of different MT systems in enterprise use settings. 
Researchers worked on evaluating medical terminologies by SacreBLEU, BLEU, 
METEOR, and TER metrics as well. Skianis et al. (2020), attempted to develop a first 
baseline translation from English to French on numerous medical terminologies and 
datasets leveraging SMT and NMT present promising results for the (International 
Classification of Diseases) ICD11 classification (Skianis et al. 2020). 

1.6 CURRENT TECHNOLOGIES 

This section discusses the current state-of-the-art of MT technologies in clinical 
practices, healthcare, and medicine. Further, we investigate additional recent in-
novations in technology that can leverage the language industry within healthcare. 

In 2010, deep neural network-style machine learning methods became wide-
spread in natural language processing and achieved state-of-the-art results in many 
tasks. It is increasingly important in healthcare and medicine, where NLP is being 
used to analyze text and notes in electronic health records. 

FIGURE 1.2 Schematic diagram of evaluation.    
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Different state-of-the-art deep learning techniques such as healthcare-specific 
named entity recognition models, word embeddings, and entity resolution models 
can extract clinical data from text. The improved methods of collecting high-quality 
data and advancements in the machine (deep) learning models fueled a new wave of 
healthcare practices. An EHR essentially stores patient records in unstructured and 
structured formats. To create a more intelligent healthcare system in which the best 
treatment decisions are computationally learned from electronic health record data 
by deep-learning methodologies. International technology giants like Google, 
Microsoft, IBM, and Amazon are all keen on developing MT. Since Google 
launched the NMT system in 2016, the improvement of the quality of MT has 
achieved more attention and interest from all other NLP tasks. 

The transformer is a new type of neural network model that emerged in 2017 
based on self-attention. The transformer model replaced previously dominated RNN 
(its variations are LSTM/GRU) and become a state-of-the model in MT and many 
other NLP tasks. Compared to RNN, transformers have much higher computational 
efficiency and can efficiently exploit the modern parallel hardware (GPU/TPU). It 
allows training on much larger models on a massive amount of data. The trans-
former framework overcomes the bottleneck in which the recurrent neural network 
model cannot be calculated in parallel. Many NMT engines produce sporadic errors 
while training the system. The popular approach in deep learning is pre-trained 
models which have been previously trained on large datasets. A pre-trained trans-
former model by fine-tuning can further improve performance, requiring fewer data 
and computational resources. It might help in the medical translation in low- 
resource languages. 

The highly lexicalized nature of languages causes sensitivity of domain shift in 
the NMT system. One solution is lexicon induction to obtain an in-domain lexicon 
and construct a pseudo-parallel in-domain corpus. The in-domain monolingual 
target corpus use word-by-word back translation for constructing the synthetic 
parallel in-domain corpus (Edunov et al. 2018; Hu et al. 2019). Furthermore, ap-
plying a pseudo-in-domain corpus with fine-tuning, a pre-trained out-of-domain 
NMT model called the unsupervised adaptation method is another explanation. 
Domain adaptation in MT can be applied when a large amount of out-of-domain 
data co-occur with a small amount of in-domain data (Soares and Becker 2018). A 
domain adaptation experiment containing a medical domain with the lexicon in-
clusion performs an acceptable accuracy in low resource language NMT. NMT with 
automated customization using domain-specific corpora say the medical domain is 
known as domain adaptation in MT (Arcan and Buitelaar 2017). 

Intento10 evaluated six domain adaptive NMT systems for English-to-German 
translation using biomedical corpora11 of several sizes (from 10K to 1M segments) 
and evaluated them compared to stock MT engines. It was a breakthrough moment 
in MT, probably the biggest one since the invention of NMT. 

A word in a sentence is often related to multiple domains that indicate its domain 
preference. The word in a distributed representation possesses embedding by mixing 
domain proportions from different domains. In a transformer architecture for different 
domains, carefully designing dot-product multi-head attention modules can achieve 
effective domain knowledge sharing in multi-domain NMT (Zeng et al. 2018). 
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A technique most commonly used in NMT, especially in a low resource lan-
guage, is transfer learning, which falls under domain adaptation. Transfer learning 
is the process where a child model in one language pair (in-domain data) is trained 
by transferring the knowledge learned from an existing parent model in another 
language pair (out-of-domain data). By initializing the parameters in NMT from the 
previous model, an increase in training accuracy on out-of-domain and multiple in- 
domain datasets has been achieved for biomedical corpora (Khan et al. 2018; Peng 
et al. 2019). 

Advanced models are used to predict hospital and professional billing codes for 
administrative cost reduction and billing process improvements using deep learning 
techniques (Joo et al. 2021). The rare words can not be translated correctly by a 
conventional NMT system. These are called out-of-vocabulary (OOV). NMT re-
places these OOV as <unk> tokens that do not have any information. <unk> (un-
known words) are unique words that cannot be translated into the target token 
during generation. So the possibility of a loss of translated information. A lexicon of 
biomedical vocabulary, MedDRA (Bo et al. 2007), is used for semantic dis-
ambiguation model to solve <unk> problem (Liu et al. 2020). 

The roadblocks to bringing medicine into the data-driven period are cultural and 
operational. It is time to safely bring huge medical data repositories and advanced 
learning algorithms together with physicians to make a deep-learning healthcare 
system. Deep learning, the newest iteration of machine learning methodologies, is 
now performing at state-of-the-art levels in previously difficult tasks such as lan-
guage processing, information retrieval, and forecasting. India is home to many 
native languages that become linguistic diversity in a multilingual country with a 
growing population. Multilingual challenge with multilingual technology. A study 
from Google (Johnson et al. 2017) showed that using multilingual data when 
training NMT systems can improve translation performance, especially when using 
a many-to-one scheme. 

The Covid-19 pandemic has shown the need for multilingual access to hygiene 
and safety guidelines and policies (Zeng-Treitler et al. 2010). A Multilingual Neural 
Machine Translation (MNMT) can be employed to translate biomedical text 
(O’Brien and Federici 2019). A large number of domain tags from generic and 
biomedical data use to train the MNMT system (Bérard et al. 2020). 

1.7 CONCLUSION 

Medical translation is a crucial factor in disseminating new knowledge and dis-
coveries in the medical field. Still, it can also be a critical factor in the provision of 
global and foreign health services. 

It cannot deny the need for machine-translated content in healthcare. Its cred-
ibility and increased use of social media during Covid-19 pandemic can only be 
expedited with more robust training data for learning the model (O’Neill 1998). 

The traditional approaches for translating text are time-consuming and require a 
series of labor-intensive levels. Because of the inefficiency and expense of con-
ventional translation, companies and agencies are looking for faster, cost-efficient, 
and better performance in terms of accuracy. The neural MT with transformer 
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model has been using a state-of-the-art method and architecture for MT. Language 
technologies have been steadily advancing to deliver high-quality translated 
documents that can be used for official purposes. 

Covid-19 is posed the history’s biggest translation challenge because it not only 
involved translating one or a small number of primary languages in a single region 
but also on a scale of thousands of languages across the world. Several crowd- 
sourced translation projects spread the knowledge to fight Covid-19 to healthcare 
workers worldwide12. 

In medicine, there is no room for mistakes and errors, which is a challenge for 
translators. Different language technologies and advanced methods can overcome 
that. In the not-too-distant future, MT will be capable of translating a text in the 
biomedical domain at the required quality. It will improve patient monitoring, 
which will improve patient outcomes. Now, the machine is acting as the rescuer in 
medicine in day-to-day life. 

NOTES  

1 https://censusindia.gov.in/2011Census/C-16_25062018_NEW.pdf  
2 https://www.integratedlanguages.com/  
3 https://translation.agency/  
4 https://pecattestation.com/  
5 http://www.shaktienterprise.com/  
6 http://www.somyatrans.com/  
7 https://linguainfo.com/  
8 https://www.tridindia.com/  
9 http://www.honeytranslations.com/  

10 https://inten.to  
11 https://ufal.mff.cuni.cz/ufal_medical_corpus  
12 https://covidtranslate.org 
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