

Use of a description language to Code the inflectia~nal
morphology and marked stress of M.G.
Building a morphological lexicon to be the base o’f a
spelling correction system, is not an easy task especially
when:
. one has to deal with a highly intlectional langu.age

with marked stress,
l one has to make it as complete as possible, since the

target in this case was a commercial product and not
just a prototype.

With the above constraints, serious consideration had to
be given to speed e&Icjeticy and disk space. Thus, our aim
was to find a way to describe, most economically such
enormous information to the fullest, while, and at the
same time avoid redundancy.

Keeping the above factors in mind, we decided on a
scheme consisting of a context-free description language
which we called -Greek Word Description Lmgtlage.
(GWDL)- describing both inflectional morphology and
stress of M.G.[16]. Thus, given the stem of every de-
clinable word, the appropriate set of rules are attached,
making possible the production of all valid forms for the
particular word. Every such combination is included in
the lexicon, forming a lexicon entry. This way all words
with the same root, are stored as a single lexical item
along with rules for allowable intIection and stress, thus
saving vast amounts of storage.

The Greek Word Description Language (GWDL)
The Greek Word Description Language (GWDL), as we
developed it, comprises a set of rules that code the de-
clinable part of inflected words. It utilizes 290 rules.
Using GWDL, only the stem of each word followedl by a
rule (or a set of rules) representing possible endings, are
stored in the lexicon. It must be mentioned here, that we
had to deal with a lexicon of nearly 90.000 stems where
for almost each stem, a set of rules was required.

GWDL which forms an inflection generator for ,M.G.,
thus coded:
l Inflection: suffix endings for gender, number, case,

person, etc. Inflection is denoted by inflection rules,
e.g., #OUSOSa= o~]oololeloilwvlou~.

l Stress: in general, words m M.G. may be stressed on
the last three syllables only. Marked stress must not
occur in single syllable words. Stress is denot.ed by
stress rules, e.g:,

!al=(I). (Stress in final position.)
!a2=(2). (Stress in penultimate position.)
!a6=(3). (Stress in antepenultimate position.)

l Infix: infix is denoted by combining rules which con-
sist of infix and inflection/stress rules, e.g., Past
Tense of Active Voice:

SAEURAI = x #PAESY !a6. , where:
(x=infix, #PAESY=inflection rule, !a6=stress rule).

The general principles underlying GWDL are as follows:

l All stems are left uncoded but are syllabificated.
Syllabification was necessary to enable handling of
marked stress.

l At the end of non-inflected M.G. words only stress
need be denoted. e.g., Ku-rtou!aZ = xo-nou. where !a?
is the GWDL stress rule which represents penul-
timate stress.

l At the end of inflected M.G. words combining rules
consisting of inflection-stress rules or infix-inflection-
stress rules can be applied, e.g.,

Kpo-o-G[Sousos7].

BNF description of the GWDL
The description of the GWDL in BNF notation is:

lexicon-file ::= p%] definition-part ‘%%’ words-part
definition-part ::= { definition)
definition ::= stress-def] inflection-def 1 form-def
stress-def ::= STRESSV ‘=I stress
stress ::= ‘(’ NUMBER { ‘,’ NUMBER } ‘)
inflection-def ::= INFLECTIONV I=’ inflection
inflection ::= ‘f SUFFIX { ‘11 SUFFIX } [‘1’] ‘I’
form-def ::= FORMV ‘=’ form { 1 form }
form ::= [INFIX] (INFLECTIONV 1 inflection)

(STRESSV (stress)
wordsgart ::= { word }
word ::= [STEM] ‘r form { 1 form] ‘1’ ‘.‘I STEM stress’.’

To exemplify the above BNF description we must men-
tion that the source lexicon files have two parts: The
definition part where the rules (GWDL) are defined and
the word part where the lexicon entries reside.

Examples of coded words
Following are two examples of coded words, together
with the word forms that can be produced from them:

-- noun: “xp6060~” /proogos/ (progress)

Lexicon Entry Produced Inflected Forms
rrpo-o-G[%ousos7]. npooSo<

xpo66ou
lrp6060
7-t pbo6ot
ff po66ov
rrpo66ou~

where,
$OUSOS7 = #OUSOSb ! a14.
#OUSOSb = 0s) ou IO) 01) WV) ouq
!a14 = (3, 2, 3. 3, 2).

-- verb: “ayantb” layapol (love)

Lexicon Entry Produced Inflected Forms
a-ya-n [$ENEAO(ayarcti, a-yarr&, aTan&,

ayamipe, ayanoBpe, ayaruks,
ayamiv , ayanch, ayanobv.

268

SPAEFI]. ayanodcra, ayartoriosq, main difficulty was to successfully attach the appropri-
ayano0uq ayanoh-sapz, ate rules to each stem, so as to derive all possible word
ayarco\jaase, ayanoimav forms while avoiding the production of unacceptable
ayano0oavs. forms, as well as avoiding redundancy and overlapping.

where,
$ ENEAO = #ENEAO !b I.
#ENEAO= wl~)a)ouv)av)a~~ou~la~E~avElouve.
!bl = (2,2,2,2,3).
$PAEFl=oucr#PAE!bl.
#PAFz = a(ES(e(avla~E(asE(ave.

Lexicon development
Overall principles
Our lexicon contains 90.000 entries. The possible word
forms produced from these entries have been calculated
to exceed one million. With each stem the appropriate
production rule(s) are related, in order to produce all the
distinct yet acceptable M.G. word forms.

The primary storage mechanism used to access words in
the Lexicon is the “Compressed Trie”m. It was estab-
lished that this data structure was the most appropriate
storage method. This method enables efficient search
and occupies less disk storage. The Compressed Trie is
used as an index to the database of the words. This
structure is relatively small (about 700Kb) compared to
data needed to represent the entire lexicon. Thus, we can
load a big part of it (or the whole, if the computer has
enough memory) into main memory. The Compressed
Trie contains the part of a word’s stem necessary to
distinguish this word from stems of all other words hav-
ing the same prefix.

In order to simplify this process an environment was
built consisting of the following tools:
1. A program capable of automatically producing lexicon
entries (stem+ inflection and stress rules) of the 90.000
words that had been stored in computer readable form.
The program was able to cut-off the ending of each
word, and decide based on this ending, the word cate-
gory (e.g., verb in past tense of active voice), so that, the
appropriate rules could be attached. This process re-
sulted in about 85% accuracy, although rules that re-
sulted in some unacceptable/meaningless forms were
attached at times. After this preprocessing the linguists
undertook the task of validating the lexicon entries
manually.
2. A synrax oriented editor. This editor assisted in two
ways: First it helped validate the syntax rules for each
entry (whether or not the rules were syntactically cor-
rect). Second, having the ability to produce the inflected
forms of each entry, the linguists were able to check the
“correctness”/acceptability of each entry and also the
completeness of the GWDL. This way, additional rules
were provided so as to result in a description language
that would be complete.
3. Mkdict (make dictionary), is a program which was
developed in order to construct the dictionaries. It takes
as input the lexicon tiles (which contain the word forms
as described above) and the set of rules, and constructs
the final dictionaries.

The Compressed Trie is also very useful in the correcfion,
where we normally search hundreds of alternative words.
If there is not an acceptable prefix in the Compressed
Trie for the alternative word we stop the search for this
alternative and continue with the next.

Spelling Correction Methodology
Error types
Spelling errors can be categorized into the following
types[3,5,10]:
a) Orthographical errors. These are cognitive errors con-
sisting of the substitution of a deviant spelling for a
correct one when the author either simply doesn’t know
the correct spelling for a word, forgot it or misconceived
it.

The number of infixes and inflections used is very small
in comparison to the number of words. For the 90.000
stems of the Lexicon database, there are about 400 dis-
tinct infixes and 200 distinct inflections which means that
these infixes and inflections are used very frequently in
order to cover the 90.000 stems. Consequently, it is
more efficient to keep them in main memory stored in a
“Symbol Table”.

The actual data of words are stored in a file on disk. We
access the position where the data for a particular word
exist through the Compressed Trie Index. If the com-
pressed trie is in main memory then we approximately
make one disk access per search for words located on the
disk dictionary.

Supporting tools
The development of the lexicon was a long and tedious
process in which many difficulties were encountered. The

The important characteristic of orthographical errors is
that they generally result in a string which is phonol-
ogically identical or very similar to the correct one. As a
consequence orthographical errors depend on the corre-
spondence between spelling and pronunciation of a par-
ticular language.
b) Typographical errors, are motoric errors, caused by
hitting the wrong sequence of keys. Hence, their char-
acteristics depend on the use of a particular keyboard
rather than a particular language. They are further cate-
gorized as:
1) deletion errors, e.g., “npopappa”
“np6ypaupaa” (program),
2) insertion errors, e.g., “npoygpaupo”,
3) substitution errors, e.g., “npoyrapua”,

instead of

269

4) transposition errors, e.g., “np6pyalqm”.

Correction schema
The above error categorizations generally apply to every
natural language. More specifically, for h4.G. it was
applied as follows:

In the case of orthographical errors, M.G. has the
following homophonous sets of vowels or vowel blends:
I)&-011 YE/, 2)0-o :/0/,3)rl-I-u-El-01:/i/
Apart from the above vowels. the following alloph.one
combinations of vowels and consonants exist:
I) xe - X7 :/x0 - xt/, 2) cpe - cpr :/m - ftl,
3) 0!3 - cf? :/se - St/, 4) au - up :lavJ,
5) yl - no :/psi, 6) 5 - KO Acsl.
Thus: Given an incorrect word we first attempt to find
out if it has an orthographical error. Using the above
sets of letters, we produce all the possible strings (we: use
the term “string” because after the substitution, the out-
come does not always result in a valid word) from the
incorrect word by substituting each of the vowels of .a set
with another vowel of the same set. The produced strings
are then looked up in the lexicon for a match. Thus,
each string produced has to be matched to one word in
the lexicon to become a possible alternative for the in-
correct word.

In the case of typographical errors we use the so called
“error reversal” method[lO] with some modifications for
better efficiency. The error reversal method is based on
the idea that from M incorrect word the correct word can
be produced, g we apply the error type in “reverse”. For
instance if we have an insertion error e.g., “rrp6ycppqq.u~”
instead of “rrp6ypap&‘, by deleting the incorrect lletter
we can produce the correct word. As a matter of fact, in
the above example we have to delete all the letters of the
word, one by one, and look up the resulting strings in the
lexicon to find the valid matches. Even more, because
the error type cannot be predicted, we have to apply all
the error rules in reverse, to find the possible correct
word.

It ought to be mentioned that especially in the process
of reversing the deletion error (which in fact is the inser-
tion of possible letters), yields to an enormous number of
possible strings which have to be looked up in the lexi-
con; e.g., trying to reverse the deletion error in the word
“rcp6ya~pu”, we must insert, one by one, all the letters of
the Greek alphabet (24) starting from the position before
the first letter of the word to the position after thle last
letter of the word (24 X 9 = 216 searches in the lex.icon).
To reduce the number of the produced words we use
trigrams. Trigrams are the valid three letter strings that
appear in any word in a language. During the insertion
we are careful not to produce words with invalid tri-
grams, thus incorrect ones.

Finally in M.G. we were faced with yet another error
type namely, stress position errors, e.g., “i&pa?i~” /kefali/
(head) instead of “~cscp~~“. The correction of this error
type is based on the lexicon structure. As we mentioned
earlier, the words are stored in the lexicon without
stress; stress follows in code form in the rule part of the
entry (e.g., !al). This way every word is searched without
the stress and as soon as an entry has b&n matched.
stress is added. If the stress is in a different position.
then there is probably a stress position error and the
word found is suggested as an alternative.

Overall System Integration
The overall system design was developed with emphasis
on speed, efficiency and user friendliness. More specifi-
cally, the system is based on three different dictionaries:
l The Memory-Resident dictionary for storage of the

most commonly used M.G. words. This dictionary
contains about 800 words. These words were col-
lected after a statistical analysis of a great number of
M.G. texts. We used a “compressed-trie” for index-
ing the roots of the words.

l The Main dictionary (described earlier), residing on
the disk, where the main part of the M.G. dictionary
is stored. The dictionary’s access time depends only
on the length of a word and not on the number of the
words in the dictionary.

l The User dictionary where user-specific words (e.g.,
terminology), are stored by the user. For the imple-
mentation of this dictionary we used a “hash table”.

The entire system is an interactive program which takes
as input an ASCII file, or a file created from one of the
four word-processors with which it is compatible, and
executes the spelling check. As soon as an “incorrect”
word has been found (a word that doesn’t exist in the
dictionaries), the user is prompted to select from the
following choices:
Skip this word.
Edit the word.
Store the word in the user’s dictionary.
Correct. (Gives possible corrections by executing the
correction algorithms.)
Exit the checking phase.

If the choice “correct” is made, the correction method is
initiated and possible corrections are provided. If any of
these corrections result in valid words, they are sug-
gested to the user as alternatives. The user can then
select the appropriate alternative to replace the mis-
spelled word.

The performance of the existing system depends on the
computer type and on the type of text. On a 386/33MHz
computer with 2Mb extended memory the checking rate
varies from 2000 words&c (when most of the checking
words are in the memory dictionary) to 60 words/s=

270

(when most of the checking words are in the main dic-
tionary).

Conclusions
In the above paragraphs we presented the experience
that was gained during the development of a spelling
correction system. We followed some well known tech-
niques but with certain adaptations and modifications in
order to handle the peculiarities of M.G.
More specifically, we were able to achieve:
a) The coding of the inflectional morphology, which
seems to be the most efficient method for lexicon de-
velopment of highly intlectional languages.
b) The development of supporting tools for the con-
struction of the lexicon. The existence of such tools
proved to be necessary for the construction and mainte-
nance of wide coverage lexicons.
c) The development of an appropriate correction
schema.
Apart from the above, and since the system was to be-
come a commercial product, great effort was put into
attaining high vocabulary coverage. This is indeed one of
the advantages of the system as we had predicted and as
was verified by feedback.

Future Directions
The Intralex spelling correction system has already
become a commercial product in the form of an inter.
active program. Furthermore, it has been approved by
Microsoft carp., as the Greek spelling module that will
be marketed with the Greek versions of their products.
Our future plans aim at expanding:
l the GWDL, for full M.G. derivational morphology

coverage.
l the Intralex lexicon entries so that syntactic as well

as semantic information be included.
Such an expanded lexicon could be the basis for the
construction of a reusable and multi-purpose grammar,
as well as an efficient parser for the syntactic and se-
mantic analysis of Modern Greek. The resulting gram-
mar is intended as a:
l starting point for further linguistic research, incor-

porating semantics and the formal properties of writ-
ten text data,

l basis of the construction of customized Natural Lan-
guage interfaces and syntax-directed full-text
retrieval systems,

l basis for the construction of syntactic text processing
tools,

l platform for research in comparative linguistics and
mechanical translation.

Acknowledgments
We thank all team members, and especially M. Stamison-
Atmatzidi (EFL Instructor/Computational Linguistics
researcher), whose guidelines, valuable comments, proof-
reading and tine tuning of English usage were indispen-

sable, and G. Moutsos (Computer Engineer). for his help
on implementing the S/W.

E-mail address: vagelat/dtriant/tsalidis/dxri@cti.gr

References
I.

6.

7.

8.

9.

Amslers A.R. “Computational Lexicology: a Re-
search Program”, AFiPS Conference Proceedings,
1982, Nat. Computer Conference, (pp. 657-663 1.
Babiniotis G. “To prjpo rnq E~rlvucrj<“. University
of Athens, 1972. (In Greek).
Bentley J. “A Spelling Checker”, Comm. of the ACM.
Volume 28, May 1985, (pp.456-462).
Crystal D. “The Cambridge Encyclopedia of
Language”, 1987, Cambridge University Press.
Darner-au J. F. “A Technique for Computer Detec-
tion and Correction of Spelling Errors”, Comm. ojrhe
ACM. Vol. 7, March 1964, (pp.171-176).
Kesisoglou I. “To v~o~?&rlvt~o shtn~o oljornpa”,
EU.qvwoi 18, 1964, (In Greek).
Knuth D. E. “The Art of Computer Programming,
Volume 3: Sorting and Searching”, Aaifison- Wesley,
Reading, Mass., 1973.
Konstantinou I. “Dictionary of Modern Greek Verb
System”, Athens, 1990, ExlxcupdrqTa Publishers. (In
Greek).
Ma&ridge P. “H NEOE?L?LT~~K~ l3.hacra”.

Translated, Athens, 1978, (In Greek).
10. Peterson L. J. “Computer Programs for Detecting

and Correcting Spelling Errors”, Comm. of the ACM.
Volume 23, December 1980, (~~1.676-687).

1 I. Rally A., Galiotou E. “A Morphological Processor of
Modern Greek”, Third Conjerence of the E-ACL,
Copenhagen, I987.

12. Robinson P., Singer D. “Another Spelling Correction
Program”, Comm. of the ACM. Volume 24, May
I981, @x296-298).

13. Stamison-Atmatzidi, T. Triantopoulou, A. Vagelatos,
D. Christodoulakis: “The Utilization of An
Electronic Morphology Dictionary and a Spelling
Correction System for the Teaching of Modem
Greek”, CALL Journal, vol. 7, n. I, 1994.

14. Tegopoulos-Fit&is “Dictionary of Modern Greek”,
1989, Apuoviu Publishers. (In Greek).

15. Triadatillidis M. “NEoAA~vIK~~ rpappaasucrj”,

O.E.A.B., Athens, 1992, (In Greek).
16. Tsalidis C., Triadopoulou T., Christodoulakis D.,

“InterLEX: A context free approach for the
description of Modern Greek Morphology”,
Proceedings of the 13th Meeting on Linguistics,
Aristoteiion University 01 Thessalonikzi, 1992.

271

